Blind spectrum sensing for cognitive radio over time-variant multipath flat-fading channels
نویسندگان
چکیده
Cognitive radio has more extensive application in recent years, and it may operate in complex wireless environmental condition such as communication systems with time-variant multipath flat-fading channel. As an essential technology for cognitive radio, most existing spectrum sensing methods are designed for time-invariant propagation channel; thus, it could be extremely difficult to achieve acceptable sensing performance when we apply them to deal with time-variant multipath fading channel. In order to overcome this obstacle, we design a novel spectrum sensing method in this investigation. Firstly, a dynamic state-space model is proposed in which two different hidden Markov models are employed to abstract the evolution of primary user state and time-variant multipath flat-fading channel gain. Based on the dynamic state-space model, the spectrum sensing problem is formulated as blind estimation problem. Relying on maximum a posteriori probability criterion and particle filtering technology, a joint estimation algorithm of the time-variant channel gain and primary user state is presented. Experimental simulations demonstrate the superior performance of our presented sensing scheme, which could be used potentially in realistic cognitive radio systems.
منابع مشابه
Bit Error Performance for Asynchronous Ds Cdma Systems Over Multipath Rayleigh Fading Channels (RESEARCH NOTE)
In recent years, there has been considerable interest in the use of CDMA in mobile communications. Bit error rate is one of the most important parameters in the evaluation of CDMA systems. In this paper, we develop a technique to find an accurate approximation to the probability of bit error for asynchronous direct–sequence code division multiple–access (DS/CDMA) systems by modeling the multipl...
متن کاملCognitive Spectrum Sensing with Multiple Primary Users in Rayleigh Fading Channels
Accurate detection of white spaces is crucial in cognitive radio networks. Initial investigations show that the accurate detection in a multiple primary users environment is challenging, especially under severe multipath conditions. Among many techniques, recently proposed eigenvalue-based detectors that use random matrix theories to eliminate the need of prior knowledge of the signals proved t...
متن کاملA Blind Hammerstein Diversity Combining Technique for Flat Fading Channels
Diversity combining techniques play an important role in combating the destructive effects of channel fading in wireless communication systems. In this work we present a blind diversity combining technique for Rayleigh flat fading channels based on Hammerstein type filters. We show that the performance of this technique is very close to ideal MRC system which is accepted as an optimum receiver ...
متن کاملA New Multiple Antennas Method based Energy Detector for Cognitive Radio over Fading Channels
In this paper we presented a DSP processor to be used as a baseband energy detectorbased spectrum sensingfor cognitive radio (CR) under fading channels. We Derived expression for the average probability of detection over Rayleigh fading channels in easiest form and Nakagami-m channels with no diversity. Novelties of this work came from proposing a multiple antennas signal detection technique fo...
متن کاملSensing of Unknown Signals over Weibull Fading Conditions
Energy detection is a widely used method of spectrum sensing in cognitive radio and Radio Detection And Ranging (RADAR) systems. This paper is devoted to the analytical evaluation of the performance of an energy detector over Weibull fading channels. This is a flexible fading model that has been shown capable of providing accurate characterization of multipath fading in, e.g., typical cellular ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- EURASIP J. Wireless Comm. and Networking
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014